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A reduction schemefor phase spaces
with almost Kähler synunetry

Regularityresults
for momentum level sets
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Abstract. For phasespaceswith a symmetryofan almostKöhlerstructure,extend-
ing the symplecticstructureof phasespace,a schemeof reduction‘is proposed,in
which the decompositioninto levelsets of a momentummappingis supplemented
by a preliminary reduction with respect to orbit typeunderthe action of the
symmetrygroup. The joint processof reduction is shown to beapplicablefor all
valuesof themomentummappingandany orbit typeconsidered,without meeting
anyof the usualobstructionsencounteredin reduction. Furthermoretheproposed
methodgivesrise to reducedphasespacesor Hamiltonian systemswhichcannotin
generalbe obtainedby thestandardprocess,dueto MarsdenandWeinstein[8], [1],

alone.
Applicability is demonstratedfor thecotangentbundleof Riemannianmanifolds,
which are shown to carry an almost Kahler structure extendingthe canonical
symplecticstructure. An almost Kàhler structure is constructedon the cotangent
bundlefor which the symmetriesinducedby isometriesof the basemanifoldare
almostKOhler automorphisms.

INTRODUCTION

We begin by reviewingthe usualcontext for reductionof phasespacewith syni-

metry, due to Marsdenand Weinstein [8], [1]. Given phasespaceas asymplectic
manifold (M, w), oneconsiderssymmetriesof thesymplecticstructurewhich can
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be describedin termsof theactionof a Lie groupGonM by symplectomorphisms:

G x M —÷M with symplectomorphicrestrictions

f.a.gEG(1).

We shall throughoutassumethe action to be proper cf. [1] andremarkbelow. A

momentum mapping associatedwith the symmetry, by definition, is a map

J : M —÷ 9*, g* beingthe dual of g, the Lie algebraof G, for which theinduced

maps

x ~ (J(x), ~) (naturalpairing), ~ E 9,

satisfy: i w = dJ(~).

Here, for ~ E ~, ~M denotesthe fundamentalvector field correspondingto

on M, [6]. In addition we assumeJ to be Ad*~equivariant,i.e. equivariant

w.r.t. 1 on M and the coadjoint action of G on g~,or commutativity of the

diagramm:

M >9*

gEG

M >9*

With thesedatathe reductionlemmacan be statedasfollows [1]:

Let p be a weakly regularvalueofJ(’2). If thequotient p : J(p)-÷J~(p)/G~

exists,thenthe2-form ~i inducedaccordingto

~M,w

p*~=i*w f-i

(i the inclusion map)

~ J1(~)/G~,~

providesa symplecticstructurefor thequotient,(f 1(p)/G~,~) beingthe reduced

phasespace.

The relevance of the reduction scheme, and in particular the role of the

momentum mapping, is bestunderstoodin applicationto a Hamiltonian system

(1) Without furthermentionmanifolds andmapsareassumedto beof classC~or smooth.

(2) I.e. J’(p)is asubmanifoldofM and T~J’(J.z)= ker T
5f f.a.x EJ’(p).
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on (M, w) of the givensymmetry,i.e. a Hamiltonian H on M which is invariant

under 4~.The Hamiltonian flow F; associatedwith (M, w, H) leavesinvariant

the momentumlevel setsJ~(p)for p E g~.The level sets themselves,however,
are not in generalsymplecticsubmanifoldsof M in the sensethat i~’wmay be

degenerate.By virtue of Ad*~equivariance,thereis on theotherhandthe residual

symmetry describedby the inducedaction of GM (the isotropy group of p under
the coadjoint action) on f~(p). In the case statedthis symmetry is factored

out to give rise to a symplectic manifold. Nondegeneracyof ci is assuredby

weak regularityof p, [1]. The whole processextendsnaturally to Hamiltonian

systems,in that H on M inducesa reducedHamiltonian H on .r 1(~)/G~by the

requirement I? op = Hoi. The reduced Hamiltonian system (J’(~)/G~~~i, H)

representsthe dynamicsof the original one, for momentump, condensedw.r.t.

the given symmetry. Both the analysis of Hamiltonian systemswith symmetry

by meansof decomposition(e.g. Jacobi’selimination of the node, [1]) and the
possibility to generatenontrivial Hamiltonian systemsor evenjust symplectic

manifolds from known or well understoodsystemswith symmetry by means

of reduction, accountfor the interest in a reduction scheme.The latter point

hasbeensuccessfullyapplied in the searchfor andunderstandingof integrable

systems,[9].

The abovestatementof the reductionlemma points at obstructionsthat may

occur in the processof reduction; the crucial points, which of course are

interrelated,are
O regularityof J~(p)
• existenceof the quotientmanifold

• nondegeneracyof theinducedform.

As regardsthe first and most relevantpoint Sard’s theoremis usually invoked

to guaranteeregularity, and henceweak regularity, for almost all p in g~.For
a general treatment, however, this would seemless satisfactory,since little is

known aboutthenatureof J(M) asa topologicalsubspaceof g~.

On the other hand, the defming property of an Ad*~equivariantmomentum

mapping suggestsstrong links betweenthe local structure of J1(p) and the

local orbit structure under the actionof G. In an approachbasedon additional

information about theaction of thesymmetry grouponemight thereforeexpect
to take care of obstructions implicitly within a suitably adaptedschemeof

reduction. Particularly detailed knowledge of the orbit structure is available

in the case of actions by isometriesof a Riemannianstructure. With a view
to reduction it seemsnatural to consideralmost Kähler symmetries,i.e. actions

by automorphismsof an almost Kähler structure. The presenceof symplectic

and Riemannianstructureintertwined by meansof an almost complexstructure

proves exceedinglyuseful in establishingregularity criteria. In thesamecontext
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— making use of the properties of isometric actions— Arms, Marsden and

Moncrief [2] establishedthe conical nature of the singularities occuring in th~

zero momentum level. We shall here use largely analogousmethodsto derive

specific regularity results, which are independentof the momentum value

consideredand which will ultimately allow for a processof reductionfor almost

Kählersymmetricsystemsmeetingnoneof the indicatedobstructions.

DEFINITIONS AND PRELIMINARIES

An almost Kähler manifold (M, w, I, g) is a manifold M with an almost

complexstructure I, and an I-invariant (i.e. hermitian) metric g, whosefunda-
mental2-form w definedby

w~(X,Y) = g~(I~X,Y) for X, Y E

is closed and hencea symplectic form for M; for an introduction see [6]. (If
in addition theNijenhuis torsion of I vanishes,I is complexandaKählermanifold

results [3], [6]). The automorphismsof an almost Kahlerstructurearediffeomor-

phisms of M which at the sametime aresymplectomorphisms,almost complex

mapsand isometriesw.r.t w, I andg. It follows from the definitions that any

two of theseconditionsimply the third.

An important tool in our analysisof the local orbit structureunderan action

G x M —s~Mwill be the notion of a G-slice [10] at a point x EM, S~say,

definedby the following conditions:

(1) S~isa closedsubmanifoldof G. S~.containingx,G.S~openmM
(2) The isotropy group I(x, G)= G~ atx leavesS~invariant: G5.S~CS~

(3) forg~G~: Sxfl
4g(Sx)=4~

From the definition it is seenthat S, locally representsM ‘modulo the action

of G’, which is put more clearlyin the following

LEMMA (1). Let S be a G-slicefor theproper action ~ : G xM —p M at x
0 EM.

Then N : = fl I(x, G) is a normal subgroupof H : = J(x0, G); G. Sis diffeomor-
xES

phic to a fibre bundle with standardfibre S and group H/N associatedwith the

principal fibre bundle GIN over G/H (where theaction of H/Non S is naturally

induced by *1). Moreover the natural diffeomorphismis equivariant w.r.t. the

obviousactionsof G.

Using a local trivialization of the bundle, thereis in particular an equivariant

local diffeomorphism‘I’ of a neighbourhoodV of in M andS x U, U a neigh-

bourhoodof eHin G/H:
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SxU

idXcogl

S x U V commutingwheredefined,

where Pg! and~g are suitablerestrictionsof thenaturalactionp : G x G/H —+

—+ G/H and 1, rsp. It follows that in a neighbourhoodof a pointwhich admits

a G-slice all isotropy groups are conjugateto subgroupsof the isotropygroup
atx.

Dealing with proper actions by isometries,there is a natural choice for a

G-slice at a point x0 EM, namely the image under the exponentialmap of a
suitable ball in (T G. x yL the orthogonal complementin T M of the tangentxo 0

spaceto the orbit of x0. Following [2] we shall reservethe nameaffine G-slice
for this construction.

As regardsa detailedintroductionto the conceptof G-slicesandthe discussion
of their existencein a generaltopological context,we refer the readerto Palais
[10], who originally developedthe notionfor a topological ratherthandifferential

theory andfor the action of compactgroups. For compactnessof the groupwe
heresubstitutea)a properactionwhich givesriseto orbits whicharesubmanifolds
locally [1], and b) the isometry propertywhich — just as compactnesswould —

allows to choosea tubular neighbourhoodof the orbit of a point in a uniform
way in compliancewith (3). See [4]. From theseingredientsa proof for the
existenceof affine G-slicesas well as of lemma(1)is easilyput together.

A first and crucial characterizationof the local orbit structureinvolves the
determinationof the isotropygroupsof points.Following correspondingnotions
in [10] we define

• the symmetry type of x EM to be the identity componentof the isotropy

groupatx :J(x, G)
O the orbit type of x EM to be the equivalenceclass

(1(x, G)) : ={HC G/H —I(x, G)},
i.e. the symmetry type gives the local structureof the isotropy group while the
orbit type specifiesthis group up to conjugation,as occurs along the orbit of

x under G. Using affine G-slices and lemma (1) the following is established:

LEMMA (2). For a proper action by isometrieson M andany(closedand connect-

ed)subgroupH of G thesets

MH:={xEM/1(x,G)=H} and

M(,,~:={x EM/I(x, G)—H}
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are embeddedsubmanifoldsofM(if notempty).
We refer to them as submanifoldsof constantsymmetryandorbit type,resp.;

(The sameholdsfor any properactional~owing of G-slicesat every point).

THE PROPOSED SCHEMEOF REDUCTION

We shallconsiderthe following datafixed throughout:

(M, w, I, g) analmostKählermanifold;

G x M —÷Ma properactionby almostKählerautomorphisms;
f :M ~ an Ad*~equivariantmomentummappingassociatedwith 4;
(andat places:H any Hamiltonianinvariantunder1).

The first step of the intendedprocessof reductionwill consistof a decomposi-
tion w.r.t. local orbitstructure.

To motivate this step,we first observethat the flow of H, F; say, commutes

with the actionof the group:

M

M ‘M commuteswhereverdefined.

It follows that bothsymmetryandorbit typeare preservedalongthe Hamiltonian

orbits, or that both MR andM(~are invariantunder the Hamiltonian flow for
any subgroupH of G.

Thesituationis howeveras follows:
• MR , as shown in [2] and below, is a symplectic submanifoldof M, i.e. to

say that for i :MH—4M, the inclusion, i”w is nondegenerate;but MR is not

invariant under the full action of G and for this reasonthe restriction of J to
MR cannotbe usedalong the linesof the reductionlemmafor furtherreduction.

O M(Th on the other handis G-invariantbut not in generala symplecticsub-
manifold in the abovesense(see below for a necessaryandsufficient criterion).

The aim is to show that nonethelessa processof reductionanalogousto the

procedureof the reductionlemma canbe applied to the submanifoldsM(~and
leads to reduced symplectic or Hamiltonian structures.The point is that this
procedure— constituting the secondstep of the proposedreductionscheme—

meetsnone of the usual obstructionswhenappliedin restrictionto eachof the

M(
11). Or to put it anotherway that the singularitieswhich do occur in the

momentumlevel sets in M are absorbedin the processof reductionw.r.t. orbit
type. An indication for this phenomenoncan already be found in [2] for the

zero level. This will be our central result,statedasa theorembelow.The proof is

organizedin threemainsteps:
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(I) J1(p) flMHis an embeddedsubmanifoldof M,

(II) J’ (p) fl M(~is an embeddedsubmanifold,

(III) ~induces asymplecticform on the quotientJ~(~p)flM~j,y’G~.
As (I) is concernedwe shouldlike to emphasizethat the proof requiresbut

the slightestmodification of methodsusedin [2], where the sameis carried out

for the zero level. The technical preliminaries,exploiting the interrelation of
metric, symplectic and orbit structure,are indeed almost identical. We shall
neverthelessgive an outlinehere,in an attempt to be reasonablyself-contained.

For x EM weprovidea positivedefinite innerproductfor g~which is invariant
underthe coadjointaction of I(x, G) (this group is compact,since4 is a proper

action)and denoteit by (, )~,By abuseof notation # andb denoteboth the
raisingandloweringoperationswith respectto

T~M b * 7M’1’ and

(,)~:9 9.

Using (, )~the adjointof F;J: T~M~ g~is deimedas
7’J~: —p 1M by the condition:

(7J v, ~ = g~(u,TXJ~p) f.a. V E 7M.

It follows that

(1) 7J~p=1x[(p#)M(x)I

and

(2) Im ~J=[ker2J~I’.

We further needa characterizationof MRandits tangentspaceat a pointx
0 EMH

in termsof the momentummappingand b, the Lie algebraof H:

H C 1(x, G) ~ ~M(~) = 0 f.a. ~E h

and, as the dimension of the isotropy group cannotincreaselocally, equality
holdson the left handside,in a neighbourhoodof x0.

Now ~M(x) = 0 iff (TXJv, ~) = dJ(fl~ 1) = 0 f.a. V E T~Mand by lineariza-

tion at x0:

(3) TXMH ={v E F;M/ d
2f(fl~ (u, u) = 0 f.a. u E T~M,~ E h } (3).

The following propertiesof the bitangentialmap d2J(~)~for ~E h will be used:

(3) The bitangentialmap of J(~): M —÷ IR at x
0 is well defined sincedY(~~is the zero

mapfor ~E I~tby ad*~equivariance.
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(4) [~,fl = 0 ~ d2J(flx(~M(xo),v) = 0 f.a. V E T~M

and I-invarianceof d2f(~)
5:

(5) f.a. u, v E T~M: d
2J(fl~(Iu,Iv) = d2J(~)~(u,v).

Outline ofproofs:

ad (4): J(~)(sI’gx)=J(Ad*.i~Xx) by Ad*~equivariance,differentiate w.r.t.

x andat x
0 forg = exp (tb) w.r.t. t;

ad (5): d
2f(~)~(u,v) = L~(dJ(~)(v))L~,= Luwx(~M(x),v) for any smooth

extensionsof u, v to vector fields; the desiredresult is obtainedusing~M(x0)= 0,
I-invarianceof ~ and the identity [lu, ~M’ = I[u, ~M~’ which follows from the
fact that G actsby almostcomplexmaps.

As a corollary from (3) and (5) one has that TXMH is I-invariant andhence

that for the inclusionmapi : MR—÷M, ~ is nondegeneratein a neighbourhood
of x

0inMH : M11 is asymplecticsubmanifoldof M.

After thesepreliminaries,we turn to the proof of (I); Let p E g~andH C G

be fixed,MH� ~:

REGULARITY OF J~(p)fl MH, PROOF OF STATEMENT (I)

Since this is a local issuelet xoEJ~(p)flMHanduse the (, ) -orthogonal

decomposition9* = Im 7f u ker TJ~ (cf. (2)) with the induced projection

F : 9* —--* im 1J to definetheauxiliary map

FoJM—--~T f.xo

Weshall show that in a neighbourhoodof x0:

(i) (F oJ)

1 (F p) n MH is a submanifoldof MH and
(ii) (FofF~(lPp)flMH=f~(p)flMH.

Togethertheseestablish(I).
ad (i):
Observethat by Ad*~equivarianceof J:

J(MH)Cg~’:={pE
9*/Ad*1p=p f.a. hEH}

(6) Ii

={~E9/[~,fl =0 f.a. ~Ek}b.

Conversely:

(7) T J+(9* )c T MR.xo xo xo

(By (3), (7) is equivalentto

d
2J(fl

5(7f~p,v) = 0 f.a. vE 1M, p E g~,~ E Pu
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which in turn by (l)and (2)is equivalentto

d
2J(flx((p#)M(xo), v) = 0 f.a. v E 2M, p E g~,~E Pu

which follows from (4)).

Now by (6) F o J restrictsto a map

~ OJIM :MH—~.P~

which canbeshown to be regularat x
0, i.e.

PoT J~ :T M —*F~ issurjective.

x0 T~MH x0 H

Proof F = T f o [T J~o T J]~o T J~ where T J~o T J is regarded asxo xo xo xo xo xo
an automorphism of Im T J~ which furthermore leavesinvariant

TXMH fl Im TJ~by (6) and(7).Let p E P i.e.

p=Fp=Fv forsome r’Eg~

=T Jo[T J~oT J]’o ~ J+pxo xn xo 0

C E Tx~i%fHD

C- ET~Mjq

=i.PEImF0
2JITM f.a. pEFg~.

Observethat onecanalso introducea projection

F:g*_~÷lm[T ftx
0 TX OM(H)

which agrees with P on 9*. This is possible since Im (T J~ ) ~x0 x0 TXOM(H)

DIm (T .J~ )= Pg* In restrictiontoM onestill hasx0 TX0MH X0 H

(8) (P of)
1(Fp) flMR= (P0.1F~(Fp)flMH.

The first choice,however, is betteradaptedto the proof of (ii) becauseof the

possibledegeneracyof w in T M(m.

ad (ii): 0

Vve observethat id * — F is locally constanton MH: by Ad*~equivarianceof

J, forx EMH:

dJ(flv =(T~f(v),~)=0 f.a. vET~M, ~Ek

(T~J(v), ~ = 0 f.a. V E TIM, ~ E Pu

(T~J(v),~Xo = 0 f.a. V E F;M, p E h~’= Ker ~ (cf. (1))

or 7j [(id * —- F) o J] = 0 for x EMH.



110 MOTTO

From the definitionsJ’ (p) fl MHC (P ofF ‘(Pp) fl MH and P°f is constant

on (PoJ~i’(Fp)flMH. HenceJ itself is constanton (P oJ)’(Pp) flMH and
(ii) holds. U

The extensionfrom MH to M(~neededfor (II) is almosttrivial for the zero

momentumlevel, by meansof G-slices,locally at any point, since J~(O)is G-
-invariant. In contrastonehas to do with G~-invariance,not necessarilyG~= G,

in the general caseand therefore the orbit structureunderthe inducedaction

of G will have to be consideredtoo.
P

REGULARITY OF J’(p) fl M~,PROOF OF STATEMENT (II)

Let x0eJ~(j.t)flM(~~w.l.o.g. I(x0, G)=H. By Ad*~equivananceHC G~
To takeinto accountthe orbit structurew.r.t. G we considerM , thesubma-

p (I1)G~

nifold of points whoseorbit type for the action of G~is (H). ObviouslyMRC

CMrn~ . Choosingan affine G -sliceat x0 inM ,,~, L say,it is easily verified
P P ( x0

that L : = L nM is an affine G -slice at x in M . Furthermore
x0 x0 (fl)G~ p 0 (R)G~

L iscontainedinM
x0 H

Lety,EL~~. I(y, G ) C H by the defmitionof slices
0

and 1(y,G~)—H as yEM~~c

and 1(y,G~)=J(y,G) as YEM(H)

X() C MH.

Hence J p)ñMHflEX=J’(p)flEX and f~(p)flE~is a submanifold

locally,asatx0 f~ (j.i) fl MRand aretransverseinMH:

XOXO = (1G~.x0)’- n TXMH

and(cf. the proofof I)

2(f~(p) flMH) = ker(P o çJ) fl TXMR = ker 7J fl T,M~.

On the otherhandJ
1(p) flL~ =J1(p) flL~:

Lety EL~ ~

y EL~
0. p

Thusthe regularityof f~i(p) in restriction to a G~~sliceat x0 EM~is established
and as pointed out abovethe extensionof the result to a neighbourhoodof x0

in M(~J~is simple,usingthe GM-invarianceof both f
1(p)andM(~.An equivariant

local diffeoniorphisni betweenL x G /H and M ~, as describedbelow lemmax
0 p (

(1), restricts to an equivariantembeddingof (f~(p)fl L~)x GM/H into M(~~
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whoseimageis f~(p)flM(~. The local structureof themanifoldf~(p)flM(~

in a neighbourhoodof an orbit G~.x0 (i.e. local w.r.t. the topology of M/G~)is
that of an associatedfibre bundle with standardfibre f~(p) fl L~ analogous

to the statementof lemma(2).
We havein particularalreadyfound that the passageto the quotientf

1(p) fl

fl M ~/G is smooth, where f~(p) fl L provides a local representationof( p x
0

themanifold structureof the quotient.

INDUCED SYMPLECFIC STRUCTURE ON THE QUOTIENT MANIFOLD

Finally, to gain (III), we shall show that p is a weakly regularvalue of the

momentum mapping in restriction to M~, and that here as in the standard
case this criterion guaranteesnondegeneracyof the induced 2-form on the
quotient f~(p)flM(JJ~/G~,although the 2-form induced on ~ may well

be degenerate.

LEMMA (3). Anyp E 9* is a weaklyregular valueoff M~

Proof. With the result of the previous paragraphit remains to show that

ker T~ffl
7M(m= T~(f~(p)flM(~) for x

0 Ef~(p)flM(H):

7~(f~(p)flM(m)= çM(JJ) n [T~(M(Jj~flL~)+ 7G~.x0]

C lM~JJ~fl ker T~f by Ad*~equivariance.

The converseinclusionprovesto bemuch harder:

Making useof the local representationof f
1(p) fl MR as

(IS oJ)1(P p) flM
11, cf. (8), where P of :M~—÷Ire TxfITM~

isregularby construction,wehave:

~ oJY’(Pp) flM(~)= T~M~fl ker (P °7~.J)

andhence

ker 7f fl 7M~ C ker (IS o fl T~M(~

= T ((IS of)-i(pp) flM(~)
(9) 0

C 1~UFoJ)~(1Pp)flMH)+ 7G.x0
r7 (J

1(p)flMH)+T G.x
0.

0

Thusv E ker 7f fl 71.M~ can be representedaccordingto (9) as
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V = V
1 + U2, V1E T (f_i(p) flMH), V2E 1G. x0.

It follows that t E kerT f, v E ker T f fl T G. x = T G . x , wherethe last
1 x0 2 x0 x0 0 x0p 0

identity is a consequenceof Ad*~equivariance,again.Thus:

ker~ffl~M(~C7(f
1(p)flMH)+ T~G~.x

0

=T (fi(p)nM ). U

X0 (H)

To completeour efforts, we still have to demonstratethe validity of the

criterion of weak regularity for nondegeneracyof the induced 2-form on the
quotient in our case— and indeed the standardproof is easily adapted.First
howeverthe result:

LEMMA (4). For any of the submanifoldsof constant orbit type, M(H)~ and

any p E 9*, the symplecticform w on M induces a unique symplecticform
on the quotientmanifoldf~ (j.L) fl M(~j)/G~according to

p* ~ = j* ~

for i : f~ (j.t) fl M(H)—÷ M the inclusion map, and p the natural projection of
the quotientmanifold.

Proof ~3is well definedas w is invariant underthe action of G~.The crucial
point is nondegeneracy.Let x0EJ~(p) flM(H) and consider in restriction

to T (J~(p)flM ). It is easily verified that
(H)

TXG.xoCTXM(H) and ker1~Jfl1M(H)

are w-orthogonal complementsin F;M(H). Hencethe degeneracyspaceof

in T~(f~(JJ)flM(H)), using lemma(3), is

7G.x0flF;M(H)flkerF;J=F;M(H)fl1~G~x0

which is factoredout in the passageto the quotient.

To put the results so far obtainedinto a more conciseform, we state the

following

ThEOREM. Let (M, w, I, g) be an almostKdhlerstructure, ‘I a properaction ofa
Lie group G on M by automorphismsof the almostKãhlerstructure with asso-
ciatedAd*~equivariantmomentummappingJ.

For any orbit type (H), H C C, andanymomentumvaluep E 9*, the quotient
manifold:
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p :f~(p)flM(H)_-4f’(p)flM(Th/GP

existsand carriesa uniquesymplectic structure ~ inducedaccording to:

w

p*~=j*w J
1(P)flM(H)

~J-1(p) flM(H)/G~~~.

In termsof reductionof phasespacewith symmetry:

A phasespace (M, w) with a symmetry which is also a symmetry of an almost
Kahler structure (M, w, I, g) extendingthe symplectic structureof phasespace
and which admits an Ad*~equivariantmomentum mapping, can— without
any obstructions— bereducedaccordingto the following scheme:
(I) decompositionof M into the submanifoldsof constantorbit type w.r.t.

the actionof the symmetrygroup;
(II) subsequentdecompositioninto momentum level sets, combined with

theusualpassageto quotientsw.r.t. the residualsymmetrygroups.

Thisschemeextendsnaturally to Hamiltoniansystemsof the givensymmetry.
The subsystemsobtained in (I) are invariantunder the Hamiltonian flow and
the reducedphasespacescarry inducedHamiltonian structureswhose relation

to the original one is just as statedin the standardformulation of reduction.

It should be pointed out that although (II) is strictly analogousto the usual
processof reduction, the standardprocedureis in generalnotapplicableto the

subsystemsarising in (I) as theseneednot be symplecticmanifolds or Hamilto-
nian subsystems.In this sensethe proposedreductionschememay indeedgive

rise to reducedphasespacesor Hamiltoniansystemswhich cannotbe obtained
usingthe standardmethod.

To concludethis paragraph,we state without proof the criterion for M(H) to

be a symplecticsubmanifoldof M locally, i.e. for w to be nondegeneratein
X

0

restriction to T M at a point x EM : w is nondegenerateon T M iffx0 ~, ~, x0 x0 (H)

G~C N(H), where p = f(x0) and N(H) denotesthe normalizerof H in C. Note
this additional link betweenthe momentummapping and the local structureof

thesymmetry.The condition is openin M.

APPLICATION TO THE COTANGENT BUNDLE
OF RIEMANNIAN MANIFOLDS

In this paragraph the applicability of the proposedreduction schemeis
illustratedfor an obvious andtypical classof phasespaceswith symmetry:

Cotangentbundles of Riemannianmanifolds with symmetriesinduced by the
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action of a groupof isometrieson the basemanifold. Thecotangentbundle with

such lifted symmetriesarisesnaturally in many applicationsand has long been
an object of investigationin the study of reduction, [1]. Typical resultsinclude

specific representationsof reduced phase spaces,for the case that the base

manifold itself is a principal fibre bundlew.r.t. the symmetry group(i.e. a most

regular orbit structure on the basemanifold is required)and for specialvalues

of the momentummap,seee.g. [7] and[11].

Here we shall require the symmetry to be induced by a proper action of a

groupof isometrieson the basemanifold but be quite generalw.r.t. orbit structure
and momentum values and concentrateon general applicability alone, of the

aboveprocessof reductionin this naturalcase,without any furtherrequirements.

Given the cotangentbundle of any Riemannianmanifold we shall extendits

canonical symplectic structure to an almost Kähler structure such that any

symplectomorphisminduced by an isometry of the basemanifold becomes

anautomorphismof thealmost Kählerstructure(4).

First someconvenientnotation andtechnicaldetailsfor dealingwith connec-

tions onM:
Let for thefollowing (M, g) be a Riemannianmanifold. We regardTM and T*M
as fibre bundlesassociatedwith the bundle of linear frames,L (M), anddenote

therespectiveprojectionsaswell as their tangentialmapsby 7r:

IT : T*M —*M,

ir:TM—~M etc..

Let a connection I’ on M be given in terms of the designationof horizontal
subspacesin the associatedbundles: for E T*M e.g. (where the notation

implies ir(a~)= x) we denoteby thehorizontal subspaceof TT*M, while

K denotesthe correspondingvertical subspaceor tangentspaceto the fibre,
(10) T T*M=Q eK

c,x .~ ~

We choosethesamenotation for TM.
A connectionF givesrise to naturalisomorphismsbetweenthe tangentspaces

T~Mand the horizontal subspacesat points of the fibre ir~1(x),thehorizontal
lift, cf. [6]. For the cotangentbundle,explicitly: the horizontallift of X E T~M
to E1r 1(x), X”(cx~) is defined by the requirements:X”(a~)E and

= X.

(4) Observethatthe Riemannianstructuremayin its turn be chosenso as to makeagiven
actionanactionby isometries.e.g.in the caseofa compactgroup.
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Even without a connectionthereis a naturalisomorphismbetweenthevertical

subspacesat any two points of the samefibre, correspondingto translationin
the standardfibre of thevectorbundle. This we shall call the vertical lift, which
for TM in particular,gives rise to an isomorphismbetween T~M K~C TM

and K~ for v~E ir’(x): X E T~Mis mappedto X”(v~)E K~representedas

X1’(v~)=a~~(V~+ tX). The inverse of this latter map will be denoted as
(X5’(v~)).~= X. Thesameconstructionandnotationappliesto T*M.

Horizontal and vertical lifts extendnaturally to vector fields or sectionsof

the bundle and give rise to horizontal and vertical lift vector fields,i.e. vector
fields on the bundle which are relatedto vector fields on the basemanifold
by the respectivelift.

We fix an — at first arbitrary — connectionF on M. The canonicalsymplectic

form on T*M is given as = — dO
0,O0(nx) = ir. We usethe decomposition

(10) to represent~ in terms of horizontal and vertical componentsof the

arguments:

LEMMA(S). ForZ1=X,+ IçET T*M,X1EQ ,

t~0(a~)(Z1,Z2) = (Y2 .1., ir(X1)) — (Y~.1., ,r(x2)),

where( , ) denotesthe naturalpairing betweenT~M* and TIM.

Outline ofproof. Consider w0(X1, X2), c~(I~,~‘2~ and w0(X1, Y2) separately

and extend the arguments to vertical or horizontal lift vector fields,rsp..
Expressingw,~= — dO0 in terms of 00 and commutatorsof the arguments,the
first two contributions are shown to vanish, while the mixed terms give the

desiredresult.

The intendedalmostcomplexstructureon T*M, 1, canbe given in restriction
to horizontal and vertical arguments,rap.. Let #, b denoteraising and lowering
operationsw.r.t. the metricg of the basemanifold anddefine:

:X F—-+[7r(X)
1’]~’(c~)

(11) ‘IK
0 ~ for aET*MXEQ YEK0,

X X X

i.e. I exchangeshorizontal and vertical components,inserting a minussign in
onecase.Note the dependenceon the choiceof connection.

LEMMA (6). I as definedby (11) is an almostcomplexstructure on T*M which

leavesw0ini’arian t.
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Outline ofproof. Differentiability of I andthe identity I~ = — id~ T*M are

obvious. Invariance of w0, i.e. c,.,0(cs)(1Z1,1Z2) = w0(cs~)(Z~,Z2) is verified

directly from the definitionsusinglemma(5).

Remark. For a torsion-free connection F, I as defined by (11) is a complex
structure, i.e. its Nijenhuis-torsionvanishes [3], [6], iff the connectionis flat.

FromI-invarianceof it is obviousthat~, definedby

(12) ~(cs~)(Z1,Z2) : = w0(cw~)(Z1,1Z2)

forZ1, Z2E Ta T*M, is a hermitianpseudo-metricon T*M.

LEMMA (7). ~as definedby (12) is a Riemannianmetric on T*M.

Hence(T*M, ~, I, ~) is an almostKählerstructurewhosefundamental2-form

is equal to the canonical symplectic form. (This holds for any connectionF
usedin (11)).

In fact ~ turns out to be the naturalextensionof g to T*M by meansof the

connection F: horizontal and vertical subspacesare orthogonal complements

w.r.t. ~ and

~(a~)(X1,X2) = g~(ir(X1),7r(x2)) for X1, X2 horizontal,
(13) j(a)(} )~)g~~#, y~#) for ~, Y2vertical.

Let now : G xM —FM be an action by isometries on M. ~ is canonically

lifted to T*M [1]:

C x T*M ~ T*M,
(g,c~)F—+(T~ )*o~

g

to give an action by symplectomorphismson T*M. The action is in fact by
automorphisms of the proposed almost Kähler structure if we choose F to

be the Levi-Civita connection for (M, g). As pointed out above it suffices to

show that 42~ preserves~ in addition to w0. This is obvious from (13) since
TcI~is an isometry w.r.t g and in particular preserveshorizontal and vertical
subspacesof the Levi-Civita connection.Summing up the results we haveesta-
blishedthe following

PROPOSITION.Let (M, g) be a Riemannian ,nanifold and 1 : G x M —+ M a

properaction by isometries.
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The inducedaction of G on T*M is a symmetryof a suitablychosenalmost

Kãhler structure whosefundamental2-form is the canonicalsymplecticform
of T*M.

Since the existenceof an Ad*~equivanantmomentummapping associated
with a symmetry of this kind is guaranteed[1], the proposedschemeof reduc-

tion is generallyapplicableto this classof phasespaceswith symmetry.

CONCLUSIONS

Apart from theappealinggeneralityin the formulation of the proposedscheme
of reductionfor almostKähler symmetricsystems,which is due to its universal

applicability within the rangeof such systems,it is to be expectedthat it facili-

tates the analysisnot only of all the systemswhich are naturallyendowedwith
an almost Kähler structure,but of thosewhich permit the constructionof an
auxiliary almostKählerstructure.

Our constructionfor the cotangentbundle,in particular,makescontactwith

manyof the classicalapplicationsof reductionandallowsfor a~generaltreatment

of geodesicflow systemsalong these lines. The derivation of the central result,

however, also providessomefurther insignt into the nature of the singulanties

of momentum level sets. From the regularity results obtained,all momentum
level setsare seento be decomposedinto their regularcomponentsin areduction

w.r.t. orbit type or symmetry type, extendingthe resultsin [2]. In this senseour
analysisalso points at a possibleapproachfor dealingwith a particularly accessi-
ble classof singularitiesor bifurcationsin mechanicalsystems.

REMARK ON THE REQUIREMENT OF PROPER ACTIONS

The full group of isometriesof a Riemannianstructure (with a finite number

of connectedcomponents),5, is a Lie groupw.r.t. the compactopentopology

and inducesa proper action on the manifold [5]. Obviously the full group of

automorphismsof an almost Kähler structureis an algebraicsubgroupof 5. By

continuity the full automorphism groupof an almost Kähler structureis closed

in 5, hencea Lie groupwith properaction on themanifold. Similarly, any action
of a Lie groupG by almost Kählerautomorphismsgivesriseto a properactionof
the closureof G in S by almostKãhlerautomorphisms.
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